

Danfoss Predictive Maintenance
FINAL REPORT

Team 32
Client: Danfoss

Adviser: Namrata Vaswani
Derek Bruun - Embedded Systems Lead / Hardware Integrations
Micky Lindsay - Software Integrations Lead / Dev Tools Manager

Smriti Manral - Lead Test Engineer / Test Designer
Victoria Rasavanh - Communications Lead / Webmaster

Jess Walters - Lead Architect / Tech Lead
http://sdmay18-32.sd.ece.iastate.edu/

Table of Contents
1 Introduction 3

1.1 Project statement 3
1.2 Purpose 3
1.3 Goals 4

2 Deliverables 4

3 Design 5
3.1 System specifications 5
3.2 PROPOSED DESIGN/METHOD 5
3.3 DESIGN ANALYSIS 5

4 Testing/Development 5
4.1 INTERFACE specifications 5
4.2 Hardware/software 6
4.3 Process 6

5 Results & Implementation details 6

6 Conclusions 7

7 References 7

8 Appendices 8
Appendix A: Table of Incurred Costs 8
Appendix B: Software Requirements 9
Appendix I: Operations Manual 11
Appendix II: Alternative solutions and architectures 14

Instructions 16

1 Introduction

1.1 PROJECT STATEMENT

According to their official website, “Danfoss Group is a global producer of products and services used in
areas such as cooling food, air conditioning, heating buildings, controlling electric motors, compressors,
bowling, drives and powering mobile machinery”. Today, Danfoss has several machine lines that are
responsible for the production of these goods. Each machine line has various stations which are handled
directly by assembly line workers. Each worker is incharge of processing a product and transferring it from
one station to another until it reaches the last station in the line. The time elapsed between the first station
and last station is used for measuring the overall productivity of a line. Being able to measure productivity
and keep record of production cycles is essential in running their business successfully.

Currently, most of Danfoss’s assembly line metrics are stored in a non-centralized way. Analysis of this data
is often done manually, costing time and effort spent making critical business decisions. Because of this,
Danfoss has requested our team (sdmay18-32) create a solution that maximizes the use of the gathered data,
and generates useful metrics in real-time. To do this, the team has designed and prototyped a dashboard
that visually streamlines the data into usable metrics, such as daily production count or first pass yield
(FYP). Data is sourced from sensors attached to assembly line workstations, and databases associating
workstations to various assembly lines.

After creating the visualization, an extended goal would be to create forecast metrics using machine
learning. Such a forecast would allow Danfoss to predict maintenance scheduling for machines, or
anticipate the number of worker output needed to meet certain production goals.

1.2 PURPOSE

Today, a large number of modern manufacturing companies are starting to incorporate data analytics and
machine learning in their production and manufacturing process. This kind of data analytics can help in
collecting metrics and computing relevant numbers essential in measuring and improving production
process. Knowing the number of items produced by each worker during their shifts can help the company
keep track of performance of each worker and see how they can improve it. Basically this specific metric
data will help them manage their workers more efficiently. Metrics showing the quantity of products
produced daily and during the shift can help the company see if they are missing something or doing
something wrong and based on those numbers help figure out how they can improve the number of good
being produced daily or during the shift.

Predicting the system underperformance with machine learning models can help improve the
manufacturing process by possibly telling the company before in hand how the future production numbers
are going to look and whether to expect system under performance or over performance, based on which
the company can decide ahead of time what they could do to improve the production process incase if
system underperformance is detected by the model.

1.3 GOALS

1. Solution Goals
a. Analyze the data given to us by Danfoss and understand the relationship between various

columns

b. Design a dashboard that displays useful metrics based on the data analytics done
c. Design a machine learning model to predict system underperformance

2. Senior Design Team Goals
a. Everyone should contribute an equal amount of work to the end product
b. If scheduling conflicts arise, the team should be notified in advance

2 Deliverables
2.1 CLIENT DASHBOARD

The client dashboard is a visual representation of an assembly line’s overall productivity. Data includes, but
is not necessarily limited to, first pass yield, time passed in the shift, units produced this shift, total number
of tests passed, overall equipment effectiveness, and overall process effectiveness. See Section 3: Design and
Appendix B: Software Requirements for details.

2.1 SOURCE CODE

All code will be version controlled for easy contribution and management. By the project’s end, the
repository will be exported and made available to Danfoss personnel. The majority of this code is Python.

2.3 DOCUMENTATION

Documentation should cover both technical and non-technical aspects of the project. This includes the
original Project Plan and Design document created for the senior design class (S E 491 and S E 492), and this
final report. Technical documentation includes instructions for setup, execution, maintenance, and design
of the solution itself, while non-technical documentation will include the project’s goals and background.

3 Design

 3.1 SYSTEM SPECIFICATIONS

The final solution is to be displayed on monitors that oversee that assembly line floors. Both assembly line
workers and managers should be able to see the dashboard’s content from afar. The design should not be so
distracting as to reduce productivity or put any workers in a position of danger. Managers should be able to
use the dashboard to make informed decisions regarding the productivity of their team, and the workers
themselves should be able to reference the dashboard to gauge their own productivity levels.

Behind the scenes, the system also needs to be managed by Danfoss developers. Their system is largely
treated as a black box for the purposes of the project, but will be represented by a MySQL database that
interfaces with Ignition to display data.

Please refer Appendix B for the full list of requirements for this project

3.2 PROPOSED DESIGN

Regarding the dashboard deliverable, the team will utilize the existing Danfoss tech stack, namely
Industrial Automation’s Ignition. This solution provides the basis of the UI and display functionality, while
our team will generate the data to display. Data will be gathered and sanitized from the existing MES
database structure wherein the client stores all relevant product line statistics.

The data analysis portion of the project will utilize this same data, and will analyze the data finding
statistics such as, first pass yield, and work time. Once the data is analyzed, it is piped into the Ignition
dashboard to be displayed on the assembly line.

3.3 DESIGN ANALYSIS

The final design meets all of our functional and non-functional requirements. The final solution is based on
Danfoss’ network stack. The system is designed to integrate fully with the MES databases as well as the
Ignition frontends deployed to the assembly lines.

4 Testing/Development

4.1 CLIENT DASHBOARD SPECIFICATIONS

A primary component of our solution is a client dashboard that faces the workers on the assembly line
floor. Notifications should be provided to management users regarding overall production or previous
production cycles. The left hand side of the visual consists of a high-level, circular representation of the
shift’s overall status. The right hand side contains some other numeric data such as first pass yield (FYP),
overall equipment effectiveness (OEE), and and overall process effectiveness (OPE). A second interface has
been proposed that shows the timestamps of specific stations, their production output, and their
relationship with other workstations in the line.

 4.2 HARDWARE/SOFTWARE

The software we are using to display our dashboard is Ignition, a software that uses Python as its primary
language to communicate with the server side and display the processed information to the workers on the
assembly line. The data is gathered from light walls and PLCs on the assembly lines. Light wall information
is sent to the database for later processing while Ignition is able to hook directly into the PLCs while still
storing this information in the database for later access.

4.3 PROCESS

Code: Testing & Development

● Input Verification - verification has been done to ensure no duplicates are put into the system as
well as no false data is intentionally entered.

● Display Verification - verification has been done to ensure that the data we are pulling to be process
is both correct and formatted in the expected way.

● Unit Tests - unit tests are planned to ensure our efficiency values, first pass yield and other
calculated values are correctly calculated and displayed.

● Local Setup - as a raw, exported Ignition project is difficult to source control, so code for individual
scripts are stored to GitLab, and manually imported to an Ignition project.

● Feedback - to ensure an effective visualization, discussions on usability and content occurred
regularly

Testing the System

● First Pass Yield - Verify that number of retested parts
● Units Produced - Verify workers are meeting production quotas more often
● Usability - Receive feedback from workers on intuitiveness of UI.
● Load Tests - Perform load testing by creating production simulation, to ensure the system is

performing as intended under normal conditions.

5 Results & Implementation Details

Our final deliverable for this project was our dashboard that would be facing the worker end. This
dashboard uses information gathered from the assembly line to keep the workers up-to-date on how their
progression through the day is compared to the expected values. This dashboard is initially only running on
a single line but can be easily scaled up to other lines by simply creating a copy of the dashboard and
pointing it to the correct PLCs on the new line. For a more detailed description of how to set up and use the
system refer to Appendix I. Unfortunately due to time constraints and changes of scope, we have been
unable to reach all testing goals.

6 Conclusions
This project has been a big lesson in how a project’s scope may change over time; we went from prototyping
a robust, machine learning-based system to prototyping a system geared toward proper data management
and visualization. Furthermore, a recent scope change adds yet another feature for a future senior design
team to work on, entailing another data display. Given our time constraints, implementation of testing and
this new, secondary dashboard would be tasks for the Danfoss team and/or any other senior design groups
that work on this project. Ultimately, had the scope been set in stone much earlier, it is likely that more
concise development work may have gotten done.

7 References
[1] Olsson, E., Funk, P. and Xiong, N. (2004). Fault Diagnosis in Industry Using Sensor Readings and
Case-Based Reasoning, Journal of Intelligent & Fuzzy Systems, 15, (41- 46).

8 Appendices

Appendix A: Table of Incurred Costs

Item Cost/Unit Quantity Incurred Cost

MSI GTX 1080 TI AERO 11G OC Video
Graphic Card

$824 2 $1648

Intel i7-7700k $330 1 $330

64gb Corsair DDR4
ram

$740 1 $740

Asus Z270-WS motherboard $379 1 $379

512Gb Samsung 960 pro m.2 NVMe SSD $289 1 $289

Corsair HX1000 PSU $199 1 $199

Thermaltake X5 TG $159 1 $159

Ignition Software License (6-month) Free 4 $0

MySQL Workbench Free 1 $0

SQL Server Management Studio Free 1 $0

SQL Server Express Free 1 $0

 Total Cost $3744

https://www.amazon.com/MSI-GTX-1080-AERO-11G/dp/B06XXGNZB3/ref=sr_1_1?ie=UTF8&qid=1512244468&sr=8-1&keywords=msi+gtx+1080+ti+aero
https://www.amazon.com/MSI-GTX-1080-AERO-11G/dp/B06XXGNZB3/ref=sr_1_1?ie=UTF8&qid=1512244468&sr=8-1&keywords=msi+gtx+1080+ti+aero
https://ark.intel.com/products/97129/Intel-Core-i7-7700K-Processor-8M-Cache-up-to-4_50-GHz
https://www.amazon.com/Corsair-Vengeance-4x16GB-Desktop-Systems/dp/B016ORTR1U
https://www.amazon.com/Corsair-Vengeance-4x16GB-Desktop-Systems/dp/B016ORTR1U
https://www.amazon.com/Z270-WS-LGA1151-Display-CrossfireX-Motherboard/dp/B07254ND9Z
https://www.newegg.com/Product/Product.aspx?Item=N82E16820147596
http://www.corsair.com/en-us/hx-series-hx1000-1000-watt-80-plus-platinum-certified-fully-modular-psu-na
http://www.thermaltake.com/products-model.aspx?id=C_00003041
http://inductiveautomation.com/ignition/unlimited
https://www.mysql.com/products/workbench/

Appendix B: Software Requirements

Definitions

● Users - users of the system include assembly line workers, assembly line management, and
developers

○ Workers - refer to employees who interact with the assembly line stations themselves.
○ Management - refer to employees who must make informed decisions based on data shown

by the dashboard.
○ Developers - refer to employees charged with maintenance and feature management.

● Client Dashboard - may simply be referred to as “the dashboard”. Interprets data from the database
to be shown visually.

● Ignition Server - represents the live datastore of the system. Mainly tasks with making requests
from the database, and updating in real-time.

● Database - For the purposes of the project, the database is stored offsite on Iowa State University’s
campus. When integrated with Danfoss architecture, it will most likely be stored on site rather than
in the cloud.

● Shift - a parameterized time frame representing hours that workers are able to work within.
○ Standard Shifts: 6AM-2PM, 2PM-10PM, and 10PM-6AM
○ Special Shifts: 6:15AM-7AM,7AM-8AM, and 8:15AM-9AM

Non-Functional Requirements

Our non-functional requirements define non-technical aspects of our project. Such aspects include:

1. Finance - The project must stay within the allocated $8, 000 budget (see Appendix A)
2. Performance - The system should be able to update quickly and respond to updates immediately.

a. The dashboard should maintain responsiveness with minimal amounts of data provided
b. The dashboard should maintain responsiveness with large amounts of data provided
c. The dashboard should be able to load the data in a timely manner when an assembly line

switch occurs
d. The dashboard should be able to load the data in a timely manner when a shift switch

occurs
3. Security - As we will be “mirroring” the production environment with our own, isolated database

populated with Danfoss data, care must be taken to ensure our interactions with it does not expose
classified information.

a. The database must be accessed using a VPN
b. The database must only consist of a subset of production data

4. Stability - The system should be stable and bug-free. We need maximum uptime to continue
running analytics on the assembly line.

a. The system should be resistant if the inflow of data stops
b. The system should be resistant to sudden, extreme increases of data inflow/outflow

5. Scalability - For the scope of the project, we will test and design our system based off the data of
one assembly line. However, it is very possible that the system will be applied to multiple assembly
lines that will be piping data into the system for long periods of time.

a. The dashboard must adaptable to multiple, and/or differently structured, assembly lines.
b. The dashboard must be able to handle data inflow/outflow for an entire assembly line shift
c. The dashboard must be able to handle data inflow/outflow for multiple assembly line shifts
d. The dashboard must be able to switch from one assembly line to another

6. Maintainability
a. Developers should be able to maintain or change the project remotely
b. Development should be able to get done collaboratively
c. The dashboard must be created through Ignition
d. Python must be employed as the primary coding/scripting language

7. Usability
a. Workers must be able to deduce what each visual component represents.
b. Workers should not be able to change parameters regarding ideal productivity goals
c. Management must be able to deduce what each visual component represents
d. Management should be able to change parameters regarding ideal productivity goals easily

in response to changing business needs
8. Documentation - Information to be provided on the system as a whole

a. Documentation must be provided regarding setup, execution, and maintenance
b. Documentation must provided regarding extendability

Functional Requirements

The created system has the following functional requirements:

1. Client - tasked with displaying the data, and updating in real-time
a. Green Status - represent the current assembly line performance as optimal or ideal
b. Orange Status - represents the current assembly line performance as acceptable, slightly

nonoptimal, and/or at risk of becoming non-ideal.
c. Red Status - color changes to red indicate significant underperformance, or non-ideal

performance
d. Display Single Shift - on one shift’s dataset may be displayed at a time
e. Display Line Name - the line name must be displayed above the data
f. Display Time - the time passed within a shift must be displayed, and must be able to turn

over once a new shift starts.
g. Display Total Units - the total number of units produced in this line during this particular

shift must be displayed in comparison
h. Display First Pass Yield - the percent of tests that passed on the first time must be displayed

for its given shift.
i. Display Overall Equipment Efficiency - represents the average efficiency of each individual

station of the assembly line as a percent. Formulated as work time of an individual station
divided by the sum of work time and idle time for an individual station.

j. Display Overall Process Efficiency - represents the average efficiency of each individual
station of the assembly line as a percent. Formulated as the total work time of the entire
line divided by the sum of the total work time and total idle time of the entire line.

2. Server - tasked with fetching data from the database, and sending data to the client
a. Database Requests - the Ignition server must be able to make requests from the database.
b. Data Parsing - the server must trim and format the data to be readable by the client
c. Send Data to Client - the server must be able to send parsed data to the client

3. Database
a. The database must be able have data added to or extracted from it.
b. The project database must only hold a subset of the production data
c. The database must be able to simulate the production environment for testing.

Appendix I: Operations Manual

The proprietary Inductive Automation platform Ignition, used for dashboard display, is a software tool
purchased and hosted by Inductive Automation clients. This server platform allows for communication
between manufacturing companies’ PLC (programmable logic controller) systems.

As the dashboards used for Danfoss require their existing layout of assembly lines and datastores,
recreation of the platform is not feasible. Regardless, this appendix covers basic Ignition Server setup.

Licensing and download information available at https://inductiveautomation.com/Ignition/.

● Installation and Setup
Through the link above, input the information (name, company, and email address) for the user
and select the desired platform to run the Ignition Web Server and Gateway. Execute the provided
binary from Inductive Automation, and proceed through the installation wizard.

After installation and upon execution of the Ignition platform, the user is presented with the
following control utility.

By default the web server is hosted at the default port “8088”. When accessed through
“http://localhost:8088”, the user is presented with the Ignition Gateway homepage. This
page is used to configure the server, launch the Ignition designer, and execute dashboards. Initially
logged out, the user must select the login option and input the default credentials of “admin /
password” for username and password respectively.

It is important to note, that the free license of Ignition will only run for two hours before needing
to be reset through the Gateway.

● Database Connection
Although the user has the ability to connect an existing PLC system, for the purposes of this project
the only connection which needs to be made is with an existing relational database. This can be
done after login from the Gateway homepage through the third available option titled “Connect
to a database” highlighted below in red.

https://inductiveautomation.com/ignition/

Ignition supports an number of database connections including MySQL, Oracle, Firebird, etc. The
user may choose whichever database system they like. The execution of this project, without
manual modification, requires the specific database schema listed within the Appendix below. This
schema is required, due to the various database queries within the project. Such queries which
retrieve specific serial numbers within specific stations on the existing Danfoss assembly lines
require this.

● Project Creation and Import
To access dashboard creation, import, and modification, the user must execute the Ignition
Designer from the “Launch Designer” button at the upper right of the Gateway homepage. This
link will download a java executable “designer.jnlp” which opens the main Ignition design
tool. This tool will require the user to authenticate again with the same admin credentials.

Upon running the designer and logging in, the user is greeted with a project creation screen. A
blank project is required before this document’s project can be imported. The user must also select
the previously created database connection which houses the correct schema.

After creation, the project (.proj file) can be imported into this blank Ignition project. To do so, the
user must access the Import dialog through the File>Import menu. Select the desired project file
and complete the import. At this point, the project can be saved and published through the same
file menu dropdown.

● Dashboard Execution

Now that the project and dashboard is published, the user may return to the Gateway browser page
and navigate to the homepage. The user will now see the named project under the Launch Project
panel. Once the user has selected the project and clicked the Launch button, another jnlp file will
be downloaded and can be executed. After login, and if the Database connection is complete with
the correct schema and data entry, the following dashboard display will be visible.

Appendix II: Alternative Solutions and Srchitectures

Initial Proposed Architecture

The initial proposed architecture revolved around the use of a web-based client connected to a server side
api. The api would grab data from a database containing data analyzed by the analytics engines. This
architecture was planned before the requirement to use Ignition was added.

Proposed Ignition-Based Architecture

After the Ignition requirement was added the project architecture was reimagined to utilize the Ignition
stack including the client and data abstraction layer allowing us to access multiple different database types.
This proved to be very convenient since both our production database and test database were of different
languages.

MES Test Database

Below is the schema for our test database. When we were initially given a large amount of MES data in the
form of a multiple CSV files. We had to reconstruct the data schema and translate it into a format that the
team was familiar with. We reconstructed the tables and types with a custom made Python script to
migrate the data into a new schema. The relationships were then determined and the primary and foreign
key pairs were added by hand using MySQLWorkbench.

